Sains Malaysiana 53(3)(2024): 667-679
http://doi.org/10.17576/jsm-2024-5303-14
SF1: A Standardised Fraction of Clinacanthus nutansthat Inhibits the Stemness Properties of Cancer Stem-Like Cells Derived from Cervical Cancer
(SF1: Fraksi Piawaian Clinacanthus nutans yang Merencat Sifat Stem Sel Menyerupai Sel Stem Kanser Diperolehi daripada Kanser Serviks)
FARIDAH ISMAIL1,2,
YUSMAZURA ZAKARIA1,*, MUHAMMAD LOKMAN MD
ISA3, NIK FAKHURUDDIN NIK HASSAN4 & TAN SUAT CHENG1
1Biomedicine Program, School of
Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian,
16150 Kota Bharu, Kelantan, Malaysia
2Department of Basic Medical
Sciences, Kulliyyah of Medicine, International
Islamic University of Malaysia, Jalan Sultan Ahmad
Shah, Bandar Indera Mahkota,
25200 Kuantan, Pahang, Malaysia
3Department of Basic Medical
Sciences, Kulliyyah of Nursing, International Islamic
University of Malaysia, Jalan Sultan Ahmad Shah,
Bandar Indera Mahkota,
25200 Kuantan, Pahang, Malaysia
4Forensic Science Program,
School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, 16150 Kota Bharu,
Kelantan, Malaysia
Received: 24 July 2023/Accepted: 21 February 2024
Abstract
Cancer stem
cells (CSCs) are a small population of tumour cells
that are responsible for tumour initiation, metastases, recurrence, and
resistance to conventional therapy. Hence, targeting CSCs is crucial in the fight against cancer. SF1, a standardised
fraction from Clinacanthus nutans leaf extract, has been reported to exhibit
potent and selective antineoplastic effects against cervical cancer cells. In
this study, the potential of SF1 to inhibit the stemness of cervical cancer stem-like cells has been evaluated. SF1 extraction was carried
out using the dry column vacuum chromatography technique. SiHa cell lines were cultured as spheres in CSC-conditioned medium (cervospheres), and the IC50 of SF1 against cervospheres was determined using the OZBlue Cell Viability Kit. The effects of SF1 on the cervosphere’s stemness markers, including CD49f, CK17, SOX2, OCT4,
and NANOG, were assessed using a flow cytometry assay. Self-renewal inhibition
and anti-tumorigenesis effects of SF1 in cervospheres were evaluated using a sphere formation assay and a xenograft mouse model. The
present study shows that SF1 treatment at an IC50 of 17.07 µg/mL
inhibited the proliferation, self-renewal, and tumorigenic capacity of SiHa cervospheres in vitro and in vivo. A decrease in the expressions of CK17, SOX2,
CD49f, and OCT4 in
cervical CSCs indicated that SF1’s inhibitory effects were also associated with
the suppression of stemness markers.
These results suggest that SF1 possesses an antitumor effect against cervical
CSCs and may be regarded as a promising approach to the development of targeted
anticancer agents for cervical cancer.
Keywords: Anticancer; cancer stem cells; cervical
cancer; Clinacanthus nutans; stemness
Abstrak
Sel stem
kanser adalah populasi kecil daripada keseluruhan sel tumor yang
bertanggungjawab mencetus pertumbuhan awal tumor, perebakan, pengulangan dan
kerintangan terhadap rawatan konvensional. Oleh itu, sasaran rawatan terhadap
sel stem kanser adalah penting bagi memerangi kanser. SF1, fraksi yang
diseragamkan daripada ekstrak daun Clinacanthus nutans, dilaporkan
menunjukkan kesan anti-kanser yang kuat dan selektif terhadap sel kanser
serviks. Dalam kajian ini, potensi SF1 untuk merencatkan ciri stem sel yang
menyerupai sel stem kanser serviks telah dikaji. SF1 diekstrak menggunakan
teknik kromatografi vakum lajur kering. Sel SiHa telah dikultur sebagai sel
sfera di dalam kultur media khusus untuk pembentukan sel stem kanser (sel sfera
kanser serviks) dan nilai IC50 SF1 terhadap sel sfera kanser serviks
ditentukan menggunakan kit kelangsungan hidup OZBlue. Kesan SF1 pada penanda
stem di dalam sel sfera kanser serviks, termasuk CD49f, CK17, SOX2, OCT4 dan
NANOG, dianalisis menggunakan ujian flositometri. Perencatan pembaharuan diri
dan kesan anti-tumorigenesis SF1 dalam sel sfera kanser serviks dinilai
menggunakan ujian pembentukan sel sfera dan model tetikus xenocantum. Kajian
ini menunjukkan bahawa rawatan SF1 pada IC50 17.07 μg/mL
merencat proliferasi, pembaharuan diri dan keupayaan tumorigenik sel sfera
kanser serviks SiHa in vitro dan in vivo. Kesan perencatan SF1
turut disertai oleh penurunan penanda stem untuk sel stem kanser serviks,
seperti yang ditunjukkan oleh penurunan dalam pengekspresan CK17, SOX2, CD49f
dan OCT4. Hasil kajian ini menunjukkan bahawa SF1 mempunyai kesan anti-tumor
terhadap sel stem kanser serviks dan berpotensi sebagai pendekatan baharu untuk
membangunkan agen anti-kanser yang bersasar terhadap kanser serviks.
Kata kunci: Anti-kanser; Clinacanthus nutans; kanser serviks; sel
stem kanser; sifat stem
REFERENCES
Alam, A., Ferdosh, S., Ghafoor,
K., Hakim, A., Juraimi, A.S. & Sarker, Z.I. 2016. Clinacanthus nutans: A review of the medicinal uses,
pharmacology and phytochemistry. Asian Pacific
Journal of Tropical Medicine 9(4): 402-409.
Ammothumkandy, A., Maliekal, T.T., Bose,
M.V., Rajkumar, T., Shirley, S., Thejaswini,
B., Giri, V.G. & Krishna, S. 2016. CD66 and CD49f
expressing cells are associated with distinct neoplastic phenotypes and
progression in human cervical cancer. European Journal of Cancer 60:
166-178.
Aramini, B., Masciale, V., Grisendi, G., Bertolini, F., Maur, M., Guaitoli, G., Chrystel, I., Morandi, U.,
Stella, F., Dominici, M. & Haider,
K.H. 2022. Dissecting tumor growth: The role of
cancer stem cells in drug resistance and recurrence. Cancers (Basel) 14(4): 976.
Bahmad, H.F., Cheaito, K., Chalhoub,
R.M., Hadadeh, O., Monzer,
A., Ballout, F., El-Hajj, A., Mukherji,
D., Liu, Y.N., Daoud, G. & Abou-Kheir,
W. 2018. Sphere-formation assay: Three-dimensional in vitro culturing of
prostate cancer stem/Progenitor sphere-forming cells. Frontiers in Oncology 8: 347.
Balasubramaniam, S.D., Balakrishnan, V., Oon, C.E. & Kaur, G. 2019. Key molecular events in cervical
cancer development. Medicina (Lithuania) 55(7): 384.
Bhattacharjee, R., Dey, T., Kumar, L., Kar, S., Sarkar, R., Ghorai, M.,
Malik, S., Jha, N.K., Vellingiri,
B., Kesari, K.K., Pérez de la Lastra,
J.M. & Dey, A. 2022. Cellular landscaping of
cisplatin resistance in cervical cancer. Biomedicine and Pharmacotherapy 153: 113345.
Bigoni-ordóñez, G.D., Ortiz-sánchez, E., Rosendo-chalma, P., Valencia-González, H.A., Aceves, C. & García-Carrancá,
A. 2018. Molecular iodine inhibits the expression of stemness markers on cancer stem-like cells of established cell lines derived from
cervical cancer. BMC Cancer 18(1): 928.
Borah, A., Raveendran, S., Rochani, A., Maekawa, T. & Kumar, D.S. 2015. Targeting self-renewal
pathways in cancer stem cells: Clinical implications for cancer therapy. Oncogenesis 4(11): e177.
Burmeister, C.A., Khan, S.F., Schäfer,
G., Mbatani, N., Adams, T., Moodley,
J. & Prince, S. 2022. Cervical cancer therapies: Current challenges and
future perspectives. Tumour Virus Research 13: 200238.
Chang, J.C.
2016. Role in tumor growth, recurrence, metastasis,
and treatment resistance. Medicine 95(S1): S20-S25.
Chen, S.F.,
Chang, Y.C., Nieh, S., Liu, C.L., Yang, C.Y. &
Lin, Y.S. 2012. Nonadhesive culture system as a model
of rapid sphere formation with cancer stem cell properties. PLoS ONE 7(2): e31864.
Cortes-Dericks, L., Carboni, G.L., Schmid, R.A. & Karoubi, G.
2010. Putative cancer stem cells in malignant pleural mesothelioma show
resistance to cisplatin and pemetrexed. International
Journal of Oncology 37(2): 437-444.
Di Fiore,
R., Suleiman, S., Drago-Ferrante, R., Subbannayya,
Y., Pentimalli, F., Giordano, A., & Calleja-Agius, J. 2022. Cancer stem cells and their
possible implications in cervical cancer: A short review. International
Journal of Molecular Sciences 23(9): 5167.
Ding, Y.,
Yu, A.Q., Wang, X.L., Guo, X.R., Yuan, Y.H. & Li,
D.S. 2016. Forced expression of Nanog with mRNA
synthesized in vitro to evaluate the malignancy of HeLa cells through
acquiring cancer stem cell phenotypes. Oncology Reports 35(5):
2643-2650.
Feng, D.,
Peng, C., Li, C., Zhou, Y., Li, M., Ling, B., Wei, H. & Tian, Z. 2009.
Identification and characterization of cancer stem-like cells from primary
carcinoma of the cervix uteri. Oncology Reports 22(5): 1129-1134.
Fong, S.Y., Piva, T., Dekiwadia, C., Urban,
S. & Huynh, T. 2016. Comparison of cytotoxicity between extracts of Clinacanthus nutans (Burm. f.) Lindau leaves from different locations and
the induction of apoptosis by the crude methanol leaf extract in D24 human
melanoma cells. BMC Complementary and Alternative Medicine 16: 368.
George,
I.A., Chauhan, R., Dhawale, R.E., Iyer,
R., Limaye, S., Sankaranarayanan,
R., Venkataramanan, R. & Kumar, P. 2022. Insights
into therapy resistance in cervical cancer. Advances in Cancer Biology –
Metastasis 6: 100074.
Huang, D., Guo, W., Gao, J., Chen, J. & Olatunji,
J.O. 2015. Clinacanthus nutans (Burm. f.) Lindau ethanol extract inhibits hepatoma in mice through upregulation of the immune
response. Molecules 20(9):
17405-17428.
Huang, R.
& Rofstad, E.K. 2017. Cancer stem cells (CSCs),
cervical CSCs and targeted therapies. Oncotarget 8(21): 35351-35367.
Ishiguro,
T., Ohata, H., Sato, A., Yamawaki,
K., Enomoto, T. & Okamoto, K. 2017. Tumor-derived spheroids: Relevance to cancer stem cells and
clinical applications. Cancer Science 108(3): 283-289.
Kim, B.W.,
Cho, H., Choi, C.H., Ylaya, K., Chung, J.Y., Kim, J.H.
& Hewitt, S.M. 2015. Clinical significance of OCT4 and SOX2 protein
expression in cervical cancer. BMC Cancer 35(5): 2643-2650.
Lee, C.H.,
Yu, C.C., Wang, B.Y. & Chang, W.W. 2016. Tumorsphere as an effective in vitro platform for screening anti-cancer stem cell
drugs. Oncotarget 7(2): 1215-1226.
Li, L. & Neaves, W.B. 2006. Normal stem cells and cancer stem
cells: The niche matters. Cancer Research 66(9): 4553-4557.
Liu, H.,
Zhang, W., Jia, Y., Yu, Q., Grau,
G.E., Peng, L., Ran, Y., Yang, Z., Deng, H. & Lou, J. 2013. Single-cell clones of liver cancer stem
cells have the potential of differentiating into different types of tumor cells. Cell Death & Disease 4(10): e857.
López, J., Poitevin, A., Mendoza-Martínez, V., Pérez-Plasencia, C.
& García-Carrancá, A. 2012. Cancer-initiating
cells derived from established cervical cell lines exhibit stem-cell markers
and increased radioresistance. BMC Cancer 12:
48.
Martens,
J.E., Arends, J., Van der Linden, P.J, De Boer, B.A.
& Helmerhorst, T.J. 2004. Cytokeratin 17 and p63
are markers of the HPV target cell, the cervical stem cell. Anticancer
Research 24(2B): 771-775.
Messerschmidt, J.L., Bhattacharya, P., Messerschmidt,
G.L. 2017. Cancer clonal theory, immune escape, and their evolving roles in
cancer multi-agent therapeutics. Curr. Oncol. Rep. 19(10): 66.
Mitra, S.K., Misra, R.K., Varshney,
B., Kumari, A. & Rai, D. 2017. Role of p16, Ki67
and CK17 in differentiating benign lesions, cervical intraepithelial neoplasia
(CIN) and atypical immature squamous metaplasia (AIM) of uterine cervix. Tropical
Journal of Pathology and Microbiology 3(1): 13-19.
Mondal, A., Gandhi, A., Fimognari, C., Atanasov, A.G. & Bishayee, A.
2019. Alkaloids for cancer prevention and therapy: Current progress and future
perspectives. European Journal of Pharmacology 858: 172472.
Ng, P.Y., Chye, S.M., Ng, C.H., Koh, R.Y., Tiong, Y.L., Pui, L.P., Tan,
Y.H., Siew, C., Lim, Y. & Ng, K.Y. 2017. Clinacanthus nutans hexane extracts induce apoptosis through a
caspase-dependent pathway in human cancer cell lines. Asian Pacific Journal
of Cancer Prevention 18(4): 917-926.
Organista-Nava, J., Gómez-Gómez, Y., Garibay-Cerdenares, O.L., Leyva-Vázquez, M.A. & Illades-Aguiar, B. 2019. Cervical cancer stem
cell-associated genes: Prognostic implications in cervical cancer. Oncology
Letters 18(1): 7-14.
Ortiz-sánchez, E., Santiago-López, L.,
Cruz-Domínguez, V.B., Toledo-Guzmán,
M.E., Hernández-Cueto, D. & Muñiz-Hernández,
S. 2016. Characterization of cervical cancer stem cell-like cells: Phenotyping, stemness, and human papilloma virus co-receptor
expression. Oncotarget 7(22):
31943-31954.
Pandrangi, S.L., Chittineedi, P., Chalumuri, S.S., Meena, A.S., Neira Mosquera, J.A., Sánchez Llaguno, S.N., Pamuru, R.R., Mohiddin, G.J. & Mohammad, A. 2022. Role of
intracellular iron in switching apoptosis to ferroptosis to target therapy-resistant cancer stem cells. Molecules 27(9): 3011.
Rositch, A.F., Levinson, K., Suneja,
G., Monterosso, A., Schymura,
M.J., Mcneel, T.S., Horner, M.J., Engels, E. & Shiels, M.S. 2022. Epidemiology of cervical adenocarcinoma
and squamous cell carcinoma among women living with human immunodeficiency
virus compared with the general population in the United States. Clinical
Infectious Diseases 74(5): 814-820.
Shen, L.,
Huang, X., Xie, X., Su, J., Yuan, J. & Chen, X.
2014. High expression of SOX2 and OCT4 indicates radiation resistance and an
independent negative prognosis in cervical squamous cell carcinoma. Journal
of Histochemistry and Cytochemistry 62(7): 499-509.
Singh, D., Vignat, J., Lorenzoni, V., Eslahi, M., Ginsburg, O., Lauby-Secretan,
B., Arbyn, M., Basu, P.,
Bray, F. & Vaccarella, S. 2023. Global estimates
of incidence and mortality of cervical cancer in 2020: A baseline analysis of
the WHO global cervical cancer elimination initiative. The Lancet Global
Health 11(2): e197-e206.
Sun, Q.,
Wang, L., Zhang, C., Hong, Z. & Han, Z. 2022. Cervical cancer
heterogeneity: A constant battle against viruses and drugs. Biomarker
Research 10(1): 85.
Swain, N.,
Thakur, M., Pathak, J. & Swain, B. 2020. SOX2, OCT4 and NANOG: The core
embryonic stem cell pluripotency regulators in oral carcinogenesis. Journal
of Oral and Maxillofacial Pathology 24(2): 368-373.
Wang, H., Paczulla, A.M., Konantz, M. & Lengerke, C. 2018. In vitro tumorigenic assay:
The tumor spheres assay. Methods in Molecular
Biology 1692: 77-87.
Wu, L., Han,
L., Zhou, C., Wei, W., Chen, X., Yi, H., Wu, X., Bai, X., Guo,
S., Yu, Y., Liang, L. & Wang, W. 2017. TGF-β1-induced CK17 enhances
cancer stem cell-like properties rather than EMT in promoting cervical cancer
metastasis via the ERK1/2-MZF1 signaling pathway. FEBS
Journal 284(18): 3000-3017.
Yahaya, R., Dash, G.K., Abdullah, M.S. & Mathews, A. 2015. Clinacanthus nutans (burm. F.) Lindau: An useful medicinal plant of
South-East Asia. International Journal of Pharmacognosy and Phytochemical Research 7(6): 1244-1250.
Yong, Y.K.,
Tan, J.J., Teh, S.S., Mah,
S.H., Ee, G.C.L., Chiong,
H.S. & Ahmad, Z. 2013. Clinacanthus nutans extracts are antioxidant with antiproliferative effect on cultured human cancer cell
lines. Evidence-Based Complementary and Alternative Medicine 2013:
462751.
Zainuddin,
N.A.S.N., Muhammad, H., Nik Hassan, N.F., Othman, N.H. & Zakaria, Y. 2020. Clinacanthus nutans standardized fraction arrested SiHa cells at G1/S and induced apoptosis via upregulation
of p53. Journal of Pharmacy and Bioallied Sciences 12(2): 768-776.
Zainuddin, N.A.S.N., Hassan, N.F.N., Zakaria,
Y., Muhammad, H. & Othman, N.H. 2019. Semi-purified fraction of Clinacanthus nutans induced apoptosis in human cervical cancer, SiHa cells via up-regulation of Bax and down-regulation of
Bcl-2. Sains Malaysiana 48(9): 1997-2006.
Zhang, S.L.,
Wang, Y.S., Zhou, T., Yu, X.W., Wei, Z.T. & Li, Y.L. 2012. Isolation and
characterization of cancer stem cells from cervical cancer HeLa cells. Cytotechnology 64(4): 477-484.
*Corresponding
author; email: yusmazura@usm.my
|